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Abstract

We report on a new and improved version of high-order
entropy-compressed suffix arrays, which has theoretical
performance guarantees similar to those in our earlier
work [16], yet represents an improvement in practice. Our
experiments indicate that the resulting text index offers
state-of-the-art compression. In particular, we require
roughly 20% of the original text size—without requiring
a separate instance of the text—and support fast and
powerful searches. To our knowledge, this is the best
known method in terms of space for fast searching.

1 Introduction

Suffix arrays and suffix trees are ubiquitous data
structures at the heart of several text and string al-
gorithms. They are used in a wide variety of applica-
tions, including pattern matching, text and informa-
tion retrieval, Web searching, and sequence analysis
in computational biology [18]. Inverted files do not
offer as much functionality, but they provide excel-
lent index compression, requiring about 0.15n log |Σ|
bits of space in practice [24, 38]. However, inverted
files also require a separate copy of the text. In terms
of functionality, inverted files support efficient search
only for words (or parts of words) in the text; they
cannot search efficiently for arbitrary substrings of T ,
as required in biological sequences, documents writ-
ten in Eastern languages, or phrase searching [1].
An efficient combination of inverted file compres-
sion, block addressing, and sequential search on word-
based Huffman compressed text is described in [27].

The suffix tree is a much more powerful text in-
dex (in the form of a compact trie) whose leaves store
each of the n suffixes contained in the text T . Suf-
fix trees [21, 23] allow fast, general search of patterns
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in T in O(m log |Σ|) time, but require 4n logn bits
of space—16 times the size of the text itself! The
suffix array is another well-known index structure. It
maintains the permuted order of 1, 2, . . . , n that cor-
responds to the locations of the suffixes of the text in
lexicographically sorted order. Suffix arrays [15, 21]
(also storing the length of the longest common pre-
fix) are nearly as good at searching. Their search
time is O(m +log n) time, but they require a copy of
the text; the space cost is only n logn bits (which in
some cases can be reduced about 40%).

Compressed suffix arrays [17, 32, 34, 36] and op-
portunistic FM-indexes [11, 12] represent new trends
in the design of advanced indexes for full-text search-
ing of documents, in that they support the functional-
ities of suffix arrays and suffix trees, which are more
powerful than classical inverted files [15], yet they
also overcome the aforementioned space limitations
by exploiting, in a novel way, the notion of text com-
pressibility and the techniques developed for succinct
data structures and bounded-universe dictionaries.

A key idea in these new schemes is that of self-
indexing. If the index is able to search for and retrieve
any portion of the text without accessing the text
itself, we no longer have to maintain the text in raw
form—which can translate into a huge space savings.
Self-indexes can thus replace the text as in standard
text compression.

Grossi and Vitter [17] developed the compressed
suffix array using 2n log |Σ| bits in the worst case with
o(m) searching time. Sadakane [34, 36] extended its
functionalities to be self-indexing, and related the
space bound to the order-0 empirical entropy H0.
Ferragina and Manzini devised the FM-index [11, 12],
which is based on the Burrows-Wheeler transform
(BWT) and is the first to encode the index size with
respect to the hth-order empirical entropy Hh of the
text. Navarro [28] recently developed an index requir-
ing 4nHh + o(n) bits, and boasts fast search. Grossi,
Gupta, and Vitter [16] exploited the higher-order en-
tropy Hh of the text to represent a compressed suf-
fix array in just nHh + O(n log log n/ log|Σ| n) bits.
The index is optimal in space, apart from lower-
order terms, achieving asymptotically the empirical
entropy of the text (with a multiplicative constant 1).

The above self-indexes are so powerful that the
text is implicitly encoded in them and is not needed
explicitly. Searching needs to decompress a negligible
portion of the text and is competitive with previous
solutions. In practical implementation, these new
indexes occupy around 25–40% of the text size and



do not need to keep the text itself. If the text
is highly compressible so that Hh = o(1) and the
alphabet size is small, the text index provides o(m)
search time using only o(n) bits. Several theoretical
tradeoffs between space and search time were also
developed [16].

In this paper, we provide an experimental study
of compressed suffix arrays in order to evaluate their
practical impact. In doing so, we exploit the proper-
ties and intuition of our earlier result [16] and develop
a new theoretical design with enhanced practical per-
formance. Briefly, we mention the following new con-
tributions.

We provide a new practical implementation of
succinct dictionaries that takes less space than the
worst case. We then use these dictionaries (organized
in a wavelet tree) to achieve a simplified “encoding”
for high-order contexts, along with run-length encod-
ing (RLE) and γ encoding. This shows that Move-
to-Front (MTF) [8], arithmetic and Huffman encod-
ing are not strictly necessary to achieve high-order
compression with BWT. We then extend the wavelet
tree so that its search can be sped up by fractional
cascading and exploiting a-priori distributions on the
queries. We couple these tasks with an elegant anal-
ysis of high-order entropy using our simple encoding,
as well as highlighting the importance of the under-
lying statistical model. In experiments, we obtain a
compression ratio slightly better than bzip2. In addi-
tion, we go on to obtain a compressed representation
of fully equipped suffix trees (and their associated
text) in a total space that is comparable to that of
the text alone compressed with gzip.

In the rest of the paper, we use ‘bps’ to denote
the average number of bits needed per text symbol or
per dictionary entry. In order to get the compression
ratio in term of a percentage, it suffices to multiply
bps by 100/8.

2 A Simple Yet Powerful Dictionary

Succinct dictionaries [9, 30] are constant-time rank
and select data structures occupying tiny space.
They store t entries chosen from a bounded universe
[0 . . . n− 1] (or any translation of it) in

⌈

log
(

n
t

)⌉

≤ n
bits, plus additional bits for their internal directories.
The bound comes from the information theoretic
observation that we need this number of bits to
enumerate each of the possible

(

n
t

)

subsets of [0 . . . n−
1]. Equivalently, this is the number of bitvectors B of
length n (the universe size) with exactly t 1s, so that
entry x is stored in the dictionary if and only if B[x] =
1. The dictionaries support several operations. The
function rank1(B, i) returns the number of 1s in
B up to (and including) position i. The function
select1(B, i) returns the position of the ith 1 in B.
(Analogous definitions hold for 0s.) The ith bit in B
can be computed as B[i] = rank1(i) − rank1(i − 1).
The constant-time fully indexable dictionaries [31]
support the full repertoire of rank and select for both
0s and 1s in

⌈

log
(

n
t

)⌉

+ o(n) bits.

Let p(1) = t/n be the probability of finding a 1
in the bitvector, and p(0) = 1 − p(1). Since

H0 = −p(0) log p(0) − p(1) log p(1) ∼ log

(

n

t

)

,

we can think of dictionaries as 0th order compressors
which can also retrieve any individual bit in constant
time. Hence, succinct dictionaries are not only of
theoretical interest but they provide the basis for
space-efficient representation of trees and graphs [19,
25]. Recently, dictionaries have been shown to
be crucial for text indexing data structures [16].
Specifically, the data structuring framework in [16]
uses suffix arrays to transform dictionaries into high-
order entropy compressing text indexers. As a result,
we stress the important consideration of dictionaries
in practice, since they can contribute fast access
to data as well as solid, effective, and alternative
compression. In particular, such dictionaries avoid a
complete sequential scan of the data when retrieving
portions of it.

2.1 Practical Dictionaries In this section, we
explore practical alternatives to dictionaries for com-
pressed text indexing data structures. When imple-
menting a dictionary D, there are two main space
issues to consider:
• The second-order space term, which is often

related to improving the access time to data, is
non-negligible and can completely dominate the
log

(

n
t

)

term.

• The log
(

n
t

)

term is not necessarily the best
possible in practice. As in strings, we can achieve
high-order empirical entropy bounds, which are
better than H0 ∼ log

(

n
t

)

.

Before describing our practical variant of dictio-
naries, let’s focus on a basic representation problem
for the dictionary D seen as a bitvector BD. Do we
really need log

(

n
t

)

bits to represent BD? For in-
stance, if D stores the even numbers in a bounded
universe of size n, a simple argument based on the
Kolmogorov complexity of BD implies that we can
represent this information with O(log n) bits. Simi-
larly, if D stores n/2 elements of a contiguous interval
of the universe, we can still represent this information
with O(log n) bits. The log

(

n
t

)

bound accounts for
these two cases in the same way as what happens for
a random set of t = n/2 integers stored in D, thus
giving log

(

n
n/2

)

∼ n bits of space. That is, it does not

account for the distribution of the 1s and 0s inside
BD, which, in the examples above, is favorable for a
better than arbitrary compression.

This observation sparks the realization that
many of the bitvectors in common use are probably
compressible, even if they represent a minority among
all possible bitvectors. Is there then some general
method by which we can exploit these patterns? The
solution is surprisingly simple and uses elementary
notions in data compression [38]. We briefly describe
those relevant notions.



Run-length encoding (RLE) simply represents
each subsequence of identical symbols (a run) as
the pair (l, s), where l is the number of times that
symbol s is repeated. For a binary string, there is
no need to encode s, since its value will alternate
between 0 and 1.

The length ` is then encoded in some fashion.
One such method is the γ code, which represents the
length ` in two parts: the first encodes 1 + blog `c in
unary, followed by the value of ` − 2blog `c encoded
in binary, for a total of 1 + 2blog `c bits. The
δ code requires fewer bits asymptotically by encoding
1 + blog `c via the γ code rather than in unary,
thus requiring 1 + blog `c + 2blog log 2`c bits. Byte-
aligned codes are another simple encoding for positive
integers that are not too small. Let lb(`) = 1+blog `c,
the minimal number of bits required to represent the
positive integer `. Byte-aligned code splits the lb(`)
bits into groups of 7 bits each, prepending a bit as
most significant to indicate whether there are more
bits of ` in the next byte. We refer to [38] for other
encodings.

We can represent a conceptual bitvector BD by
a vector of nonnegative “gaps” G = {g1, g2, . . . , gt},
where BD = 0g110g21 . . .0gt1, where each gi ≥ 0.
We assume that BD ends with a 1; if not, we can use
an extra bit to denote this case and encode the final
gap length separately. We also assume that t ≤ n/2
or else we reverse the role of 0 and 1.

Let the “optimal cost” of the dictionary using
gap encoding be denoted by E(G) =

∑t
i=1 lb(gi + 1).

The important point is that the optimal cost is never
worse than the optimal worst-case encoding of BD,
which takes log

(

n
t

)

bits.

Fact 2.1. The optimal cost of a dictionary using gap
encoding satisfies E(G) ≤ log

(

n
t

)

, where t ≤ n/2 is
the number of 1s out of a universe of size n.

Proof. Let’s assume for the moment that BD ends
with a 1. By convexity, the worst-case optimal cost
occurs when the gaps are of equal length, giving
E(G) ≤

∑t
i=1 lb(gi +1) ≤ t lb(n/t) ≤ t+ t log(n/t) ≤

log
(

n
t

)

, which follows since log
(

n
t

)

= t log(n/t) +
t log e−Θ(t/n)+O(log t). If BD doesn’t end with a 1,
we need to append one extra bit and lb(gt+1+1) bits,
and the bound still holds by a similar argument.

An approach that works better in practice, al-
though not quite as well in the worst case, is to rep-
resent BD by the vector of run-length values L =
{`1, `2, . . . , `j} (with j ≤ 2t and

∑

i `i = n) where

either BD = 1`10`21`3 . . . or BD = 0`11`20`3 . . .. (We
can determine which case by a single additional bit.)
We can define the optimal cost of the dictionary us-

ing run-length encoding as E(L) =
∑j

i=1 lb(`i). By
a similar argument, we can prove the following:

Fact 2.2. The optimal cost of a dictionary using
run-length encoding satisfies E(L) ≤ log

(

n
t

)

+ (2 −
log e)t, where t ≤ n/2 is the number of 1s out of a
universe of size n.

log(gap) RLE+γ Gap+γ log
(

n
t

)

E(L) E(G)
1 1.634 2.001 1.378 1.315 1.500
2 2.900 3.000 2.427 2.199 2.000
3 4.477 4.000 3.439 3.111 2.500
4 6.256 5.625 4.442 3.998 3.313
5 8.142 7.374 5.445 5.000 4.187
6 10.091 9.193 6.440 5.995 5.097
7 12.067 11.116 7.443 6.993 6.058
8 14.075 13.073 8.444 7.989 7.037
9 16.056 15.030 9.444 8.990 8.015
10 18.124 17.029 10.449 10.004 9.014

Table 1: Comparison between E(L), RLE+γ codes,
and log

(

n
t

)

. Each bitvector BD is produced by
choosing a maximum gap length and generating
uniformly random gaps of 0s between consecutive 1s.
The gap column indicates the maximum gap length
on a logarithmic scale. The values in the table are
the bits per gap required by each method.

Proof. It follows from the fact E(L) ≤ E(G) + t.

We do not claim that E(G) or E(L) is the mini-
mal number of bits required to store D. For instance,
storing the even numbers in BD implies that `i = 1
(for all i), and thus E(L) ∼ log

(

n
t

)

∼ 2t = n. Us-
ing RLE twice to encode BD, we obtain O(log n) re-
quired bits, as indicated by Kolmogorov complexity.
On the other hand, finding the Kolmogorav complex-
ity of an arbitrary string is undecidable. Despite its
theoretical misgivings, we give experimental results
on random data in Table 1 showing E(L) ≤ log

(

n
t

)

.

Notice that E(L) outperforms log
(

n
t

)

for real data
sets, indicating that there must be few enough sit-
uations with a singleton 1 (or 0), that their cost is
more than paid for by the improved coding of con-
tiguous items. Notice also that RLE+γ outperforms
Gap+γ for small gap sizes (namely 4 or less). This
behavior motivates our choice for RLE, as many gap
sizes are small in our distributions. The columns for
RLE+γ and Gap+γ codes refer to taking BD and
encoding each run-length (or gap) using the γ code,
rather than lb (which is not a prefix code).

We also performed experiments comparing the
space occupancy of several different encodings in
place of the γ code. We summarize those experiments
in Table 2. Each of the encoding schemes is used
in conjunction with RLE (unless noted otherwise) to
provide the results in the table. Golomb uses the
median value as its parameter b. Maniscalco refers
to code [29] that is specially tailored for RLE in the
Burrows-Wheeler transform (BWT). Bernoulli is the
skewed Bernoulli model with the median value as its
parameter b. MixBernoulli uses just one bit to encode
gaps of length 1, and for other gap lengths, it uses
one bit plus the Bernoulli code. This method shows
that the underlying distribution of gaps in our data
is Bernoulli. (When b = 1, the skewed Bernoulli code
is equal to γ.) Notice that, except for random.txt,
γ codes are less than 1 bps from E(L). For random



text, γ codes are not as good as expected. Note also
that E(G) and Gap+γ outperform their respective
counterparts on random.txt, which represents the
worst case for RLE.

We can use δ codes to store BD, using just

E(L)+
∑j

i=1blog log(2`i)c bits by Fact 2.2. Similarly,
γ coding require 2E(L) − t bits, though in practice
it outperforms δ, since γ is more efficient for small
run-lengths. For a detailed study on the encoding
of arbitrary integers sequences, we refer the reader
to [37]. In this paper, we focus on encoding RLE
values for the dictionary problem. Table 2 suggests γ
as best encoding to couple with RLE.

In order to support fast access, we can use
a simple scheme from [9, 19, 30, 31] and pay an
additional cost of o(n) bits. In the full paper, we show
how to support rank and select in constant time with
our encoding. As previously noted, such schemes
have limited use in practice because the o(n) space
required to support fast access is non-negligible and
often contributes the bulk of space. In addition, that
space bound does not scale well in our text indexing
data structures.

2.2 Fast Access of Practical Dictionaries We
focus here on the practical implementation of our
scheme to avoid the cost of the directories by relaxing
the access cost. We propose a simplified version of the
data structures that exploits the specific distribution
of the run-lengths when dictionaries are employed
for text indexing purposes. Our dictionaries support
rank and select primitives in O(log t) time (with a
very small constant) to obtain low space occupancy
for our dictionary D seen as bitvector BD:

(1) Letting γ(x) denote the γ code of positive
integer x, we store the stream γ(`1) · γ(`2) · · · γ(`j)
of encoded run-lengths. We store the stream in
double word-aligned form. Each portion of such
an alignment is called a segment, is parametric,
and contains the maximum number of consecutive
encoded run-lengths that fit in it. We pad with each
segment dummy 1s so they all have the same length of
O(1) words (this padding add a total number of bits
which is negligible; moreover, the padding bits are
not accounted as run-lengths). Let S = S1 · S2 · · ·Sk

be the sequence of segments thus obtained from the
stream.

(2) We build a two-level (and parametric) direc-
tory on S for fast decompression.
• The bottom level stores |Si|

0 and |Si|
1 for each

segment Si, where |Si|
0 (resp., |Si|

1) denotes
the sum of run-lengths of 0s (resp., 1s) relative
to Si. We store each value of the sequence
|S1|

0, |S1|
1, |S2|

0, |S2|
1, . . . , |Sk|

0, |Sk|
1 using the

byte-aligned codes with continuation bit. We
then divide the resulting encoded sequence into
groups G1, G2, . . . , Gm, each group containing
several values of |Si|

0 and |Si|
1. The size of each

group is O(1) words.
• The top level is composed of two arrays (A0 for

0s, and A1 for 1s) of word-aligned integers. Let
|Gi|

0 (resp., |Gi|
1) denote the sum of run-lengths

of 0s (resp., 1s) relative to Gi. The ith entry of

A0 stores the prefix sum
∑i

l=1 |Gl|
0. The entries

of A1 are analogously defined. We also keep an
array of pointers, where the ith pointer refers
to the starting position of Gi in byte-aligned
encoding in the bottom level (since the first two
arrays can share the same pointer). Here we
incur a logarithmic cost due to the binary search
required in A0 or A1. All other work (accessing
the array of pointers and traversing the bottom
level) is essentially constant-time.

The implementation of rank and select follows es-
sentially the same algorithmic structure. For exam-
ple, executing select1(x) starts out in the top level
and performs a logarithmic binary search in A1 to
find the position j of the predecessor x′ = A1[j] of x
(the interpolation search in this case does not help in
practice to get O(log log t) expected time). Then, us-
ing the jth pointer, it accesses the byte-aligned codes
for group Gj and scan sequentially Gj with partial
sums looking at the O(1) values |Si|

0 and |Si|
1 until

it finds the position of the predecessor x′′ for x − x′

inside Gj . At that point, a simple offset computa-
tion can lead to the suitable segment Si (this is why
they are padded with dummy bits), whose O(1) words
are scanned sequentially for finding the predecessor of
x − x′ − x′′ in Si. We accumulate the partial sum of
bits that are to the left of the latter predecessor. This
sum is the value to be returned as select1(x). In rank ,
we reverse the role of the partial sums in how they
guide the search.

As it should be clear, the access is constant-
time except for the binary search in A0 or A1. We
will organize many of these directories into a tree
of dictionaries (a wavelet tree), and thus performing
a sequence of select operations along an upward
traversal of p nodes/dictionaries through the tree.
We reduce the O(p log t) cost to O(p + log t) by
using an idea similar to fractional cascading [10].
Suppose a dictionary D is the child of dictionary D′

in the wavelet tree. Suppose we have just performed
a binary search in A0 of D. We can predict the
position in A0 of D′ to continue searching. So instead
of searching from scratch in A0 of D′, we retain
a shortcut link from D to indicate the next place
to search in A0 of D′, with a constant number of
additional search steps. Thus, the binary search in p
dictionaries along a path in the tree will be costly only
for the first node in the path. This approach requires
an additional array of pointers for the shortcut links.

3 Exploiting Suffix Arrays: Indexing Equals
Compression

In Section 2, we explored dictionary methods which
perform well in practice. Now, we apply these dictio-
nary methods to compressed suffix arrays [16, 17, 34,
36] and show both experimental success as well as a
theoretical analysis of these practical methods. We



File E(L) E(G) RLE+γ Gap+γ RLE+δ Golomb Maniscalco Bernoulli MixBernoulli
book1 1.650 2.736 2.597 3.367 2.713 20.703 20.679 2.698 2.721

bible.txt 1.060 2.432 1.674 2.875 1.755 15.643 16.678 1.726 1.738
E.coli 1.552 1.591 2.226 2.190 2.520 2.562 2.265 2.448 2.238

random.txt 5.263 4.871 8.729 6.761 8.523 25.121 18.722 8.818 8.212

Table 2: Comparison of various coding methods when used with run-length (RLE) and gap encoding. Unless
stated otherwise, the listed coding method is used with RLE. The files indicated are from the Canterbury
Corpus [2]. The values in the table are the bps required by each method.

refer the reader to [16] for the background notions.
We begin by proving the following theorem.

Theorem 3.1. We can encode the nk entries in all
sublists at level k of the compressed suffix array using
at most 2nHh +nk log e+o(n) if we store each sublist
as a dictionary D using RLE+γ.

Proof. We note that each of our dictionaries D takes
at most 2E(G) bits, which are bounded by 2 log

(

n
t

)

by Fact 2.1. We can replace our dictionaries in the
analysis by Lemma 3.6 in [16], at most doubling the
theoretical worst-case bounds. The result follows
automatically.

This discovery brings up a remarkable point—our
practical dictionary is blind to the universe size that
was so carefully constructed in [16] to allow the use
of the fully indexable dictionaries from [31] (whose
space occupancy is almost linearly dependent with
the universe size).

We propose operating implicitly on any context
order h ≥ 0, and we argue that due to the nature of
our directory, we are still able to achieve simultane-
ously the higher-order entropy given in [16]. More-
over, we automatically balance the additional cost
of retaining long contexts versus its impact on sec-
ondary structures. Said more mathematically, we
can split the cost in [16] as nHh + M(h), where
M(h) refers to the overhead necessary to encode a
statistical model for contexts of length h. In other
papers [14, 22], it is assumed that M(h) is a con-
stant bounded by O(Σh). However, this assumption
fails for sufficiently large values in our experiments
(h ≥ 4). In fact, it is trivial to show that for suffi-
ciently large h, we have nHh = 0. In similar cases
(though not necessarily as extreme), the high-order
entropy only has an asymptotic effect, whereas the
contribution of M(h) may dominate the expression.
This observation motivates the need to acknowledge
the model cost as a significant factor in compression.
Apparently, this issue has been somehow obscured in
previous literature.

Now we prove our main theorem in this sec-
tion, which describes how to encode the Φ func-
tion from [17]. The neighbor function Φ is nothing
more than the inverse of the LF mapping from the
Burrows-Wheeler transform. It encodes for each po-
sition, in terms of suffix arrays, the location of the
next suffix of the text in the suffix array.

Theorem 3.2. We can encode Φ using 2nHh + n +
o(n) bits with γ encoding, thus implicitly achieving
high-order entropy.

Proof Sketch: In [16], we conceptually break down
the lists of the compressed suffix arrays into sublists
for each context of order h (to scale the universe
size in the dictionaries). We now are encoding
all the sublists for the same symbol in one shot
using our practical dictionaries incrementally (see
also Section 3.1). Hence, the difference in encoding
is that we save by not having to store pointers
to the beginning of each sublist (which contribute
significantly to the space M(h) for the statistical
model when there are many sublists). On the other
hand, our gaps can be longer when the gap traverses
a sublist. The idea is to show that the savings more
than make up for the loss. Let’s consider one such
gap g, decomposed into three parts:
• g′, the length of the jump out of the previous

context (or sublist);
• g′′, the length of the jump over empty contexts

(or sublists) within a particular list;
• g′′′, the length of the jump from the beginning

of the context (or sublist) containing this item.

The value g′′′ is exactly what is stored within a sublist
if the context is explicit; our task remains to show
that

∑

g∈G log g − log g′′′ = o(n). Note also that

since log g ≤ log(g′ + g′′) + log g′′′ for all g, we note
that encoding the three values together is strictly
better than encoding the two pieces separately. In
particular, the log(g′ + g′′) term is bounded by the
pointer size to the sublists, and therefore we get the
same space bound proven in [16], with the exception
that the coefficient in front of the entropy term is 2
instead of 1 due to the γ encoding’s coefficient of 2.
(Note that δ coding could be used to achieve an
even more succinct encoding—theoretically achieving
a coefficient of 1—though we do not consider it due
to its suboptimality in practice.)

We introduce notation from [16] to clarify the
proof. Let the number of contexts be c =
min{|Σ|h, n}, where h ≤ α log|Σ| n, for 0 < α < 1. In

other words, c ≤ nα. (This places the same restric-
tion on the range for h as [16].) For each list, we can
have at most c instances where we have non-zero val-
ues for g′ and g′′. Since the gaps of all such instances
cannot exceed n, we can consider the worst case en-
coding for such a scenario – encoding c items equally
out of n. Similar to arguments made previously, the



bound then is c log(n/c) ≤ nα(1 − α) log(n) = o(n).
Since this bound applies for each Σ list, we take at
most |Σ| times as much space, which is again, o(n)
(for compressible text), thus finishing the proof.

One major advantage of block sorting is that not
only does it compress according to high-order en-
tropy, it also concisely represents the underlying sta-
tistical model. Ferragina and Manzini [11, 12] em-
ploy a Move-to-Front (MTF) encoder [8] to capture
the high-order entropy, but require a non-trivial rep-
resentation of the model. In the next section, we
describe how to use our dictionaries (RLE+γ), the
suffix array (block sorting), and the wavelet tree (in-
cremental representation of lists) to achieve the same
compression ratio of methods as bzip2, without us-
ing MTF, arithmetic, or multi-table Huffman encod-
ing. Giancarlo and Sciortino [14] also avoided us-
ing the MTF encoder, but it came at the price of
a quadratic dynamic programming scheme. Ferrag-
ina and Manzini [13] recently devised a linear-time
method to partition BWT optimally for any given
H0 compressor, so as to achieve high-order entropy
without using a MTF encoding. Moreover, finding a
tighter encoding than γ for RLE would improve the
state of the art on compressors.

3.1 Wavelet Trees Grossi, Gupta, and Vitter [16]
describe a method for reducing the redundancy inher-
ent in maintaining separate dictionaries for each sym-
bol appearing in the text. In order to remove redun-
dancy among dictionaries, each successive dictionary
only encodes those positions not already accounted
for previously. For instance, list 1 encodes the loca-
tions of elements in its list relative to all other lists.
For those locations not used by list 1, list 2 encodes
the locations of elements in list 2 relative to lists 3, 4,
. . . . For those locations not taken up by lists 1 or 2,
list 3 gives the locations of elements in list 3 relative
to lists 4, 5, . . . , etc.

Encoding the lists this way achieves the high-
order entropy, as per the discussion in Lemma 4.1
of [16]. However, the lookup time for a particular
item is now linear in the number of lists, as a
query must backtrack through all the previous lists
to reconstruct the answer. The wavelet tree relates
a list to an exponentially growing number of lists,
rather than simply all prior encoded lists.

Consider a completely balanced wavelet tree,
where we do not actually store the leaves (i.e. the
actual sublists themselves). We implicitly consider
each left branch to be associated with a 0 and each
right branch to be associated with a 1. Each internal
node is a dictionary D with the elements in its left
subtree stored as 0, and the elements in its right
subtree stored as 1. For instance, the root node of
the tree in Figure 1 represents each of the positions
of s1, . . . , s4 as a 0, and each of the positions of
s5, . . . , s8 as a 1.

Since there are at most |Σ| lists, any symbol from
the text can be decoded in just O(log |Σ|) time. This
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Figure 1: A wavelet tree

functionality is also sufficient to support multikey
rank and select , in which we support them for any
symbol c ∈ Σ (one leaf per symbol, but again, not
stored). For further discussion of the wavelet tree,
see Section 4.2 in [16].

We introduce two improvements for further
speeding up the wavelet tree—use of fractional cas-
cading and adopting a Huffman prefix tree shape.
First, we implement links to enable fractional cascad-
ing as described at the end of Section 2.1. Second,
one can prove that theoretically, the space occupancy
of the wavelet tree is oblivious to its shape. (We de-
fer the details of the proof in the interest of brevity,
though the reader may be satisfied with the obser-
vation that the linear method of evaluating lists is
nothing more than a completely skewed wavelet tree.)

We performed experiments to verify the truth of
this in practice. Briefly, we generated 10, 000 ran-
dom wavelet trees and computed the space required
for various data. Our experiments indicated that a
Huffman tree shape was never more than 0.006 bps
more than any of our random wavelet trees. That
translates into a less than 0.1% improvement in the
compression ratio with respect to the original data.
Moreover, most generated trees (over 90%) were ac-
tually worse than our baseline Huffman arrangement,
and did not justify the additional computation time.
Closer inspection of the data did not yield any in-
sights as to how to generate a space-optimizing tree,
even with the use of heuristics; one could, however
marginally, improve our space by generating trees
until a satisfactory replacement is found. Neverthe-
less, the key point is that the theoretical bound seems
quite stable in practice.

Since the shape does not affect the space re-
quired, we can shape it so that it minimizes the ac-
cess cost under the assumption that the distribution
of the calls to the operations in the wavelet tree is
known a priori. To describe the above more formally,
let f(c) be the estimated number of accesses to leaf c
in the wavelet tree, for c ∈ Σ. Let’s build an optimal
Huffman prefix tree by using f(c) as a measure for
each c. It is well-known that the depth of each leaf
is at most 1 + log

∑

x f(x)/f(c) which is nearly the
optimal average access cost to c. Thus, we require,
on average, just 1+ log

∑

x f(x)/f(c) calls to rank or
select involving leaf c.



Huffman Cascading bible.txt book1

No No 1.344 1.249
No Yes 1.269 1.296
Yes No 1.071 0.972
Yes Yes 1.000 1.000

Table 3: Effect on performance of wavelet tree us-
ing fractional cascading and/or a Huffman prefix tree
shape. The columns for Huffman and Cascading in-
dicate whether that technique was used in that row.
The values in the table represent a ratio of perfor-
mance normalized with the best case (lower numbers
are better). We do not show the improvement in per-
formance from linear lists to the wavelet tree as it
gains a factor of 10–20 in English texts as expected.

Lemma 3.1. Given a distribution of the accesses to
the wavelet tree in terms of the estimated number
f(c) of accesses to each leaf c, we can shape the it
so that the average access cost to leaf c is at most
1+log

∑

x f(x)/f(c). The worst-case space occupancy
of the wavelet tree does not change.

We make the empirical assumption that f(c) is
the frequency of c in the text (but other metrics
are equally suitable), reducing the weighted average
depth of the wavelet tree to H0 ≤ log |Σ|.

We performed experiments to demonstrate the
effectiveness of fractional cascading and the Huffman-
style tree shaping. The results are summarized in Ta-
ble 3. The table contains timings for decompressing
the entire file in question using repeated calls to the
wavelet tree. This is not the most efficient way to
decompress a file, but it does give a good measure
of the average cost of a call to the wavelet tree. As
can be seen from the data, fractional cascading does
not always improve the performance, while Huffman
shaping gives a respectable improvement.

The wavelet tree can be built in O(nH0) time as
follows. For each leaf l (considered in left to right
order), propagate its entries to its ancestors. If l is a
left child, stop the current run-length of 1s (if any),
otherwise increment the number of 0s in the current
run-length; if l is a right child, perform the symmetric
operations. Given any internal node in the tree, the
set of values stored there are produced in increasing
order, without explicitly creating the corresponding
bitvector.

The resulting wavelet tree is itself an index that
achieves 0-order compression and allows decoding of
any symbol in O(H0) expected time. In particular,
it’s possible to decompress any substring of the com-
pressed text using just the wavelet tree. This struc-
ture is a perfect example where indexing is compres-
sion. Some experiments (summarized in Table 4) in-
dicate its value as a compression mechanism depen-
dent on the Φ transformation of the data. In the
table, wave refers to the wavelet tree built on the
original text; arit refers to the arithmetic code [33];
bzip2 version 1.0.2 is the Unix implementation of

block sorting based on the Burrows-Wheeler trans-
form; gzip is version 1.3.5; lha is version 1.14i [3];
vh1 is Karl Malbrain and David Scott’s implementa-
tion of Vitter’s dynamic Huffman codes; zip is ver-
sion 2.3; and wavesa is the wavelet tree built on the
Φ function. Note that the wavelet tree outperforms
most other methods when built on the Φ function.

3.2 Suffix Array Compression Based on the ex-
periments above, we can conclude that suffix arrays
combined with the wavelet tree are the key to high-
order compression. They avoid explicit treatment of
the order of context (unlike [16]), but allow for indi-
rect context merging through the run-length encoding
of the dictionaries employed in the wavelet tree. Our
experiments also show that Move-To-Front (MTF)
and Huffman/arithmetic coding are not strictly nec-
essary to achieve high-order compression in our case.
We detail these results in Table 5. Notice that Man-
iscalo and Golomb gain a huge savings from using
MTF, but in all cases, γ performs better without. In-
deed, γ is better than any other method for each file,
aside from E(L), which represents the lower bound
on the specific code size we are using. Also note that
values for wavesa from Table 4 are larger than their
corresponding (non-MTF) entries in the γ column, as
the former must includes some padding bits to allow
fast access.

In summary, we obtain high-order compression
with three simple ingredients: suffix arrays, wavelet
trees, and dictionaries based on RLE and γ encod-
ing. Interestingly enough, wavelet trees coupled with
suffix arrays are multi-purpose data structures – they
can implement the Φ function of compressed suffix ar-
rays (using multikey select) or the LF mapping of the
Burrows-Wheeler transform in the FM-index (using
multikey rank).

3.3 Suffix Array Functionalities We now have
all the ingredients for implementing compressed suffix
arrays, which support the following operations.

Definition 1. Given a text T of length n, a com-
pressed suffix array [17, 34, 36] for T supports the
following operations without requiring explicit stor-
age of T or its (inverse) suffix array:
• compress produces a compressed representation

that encodes (i) text T , (ii) its suffix array SA,
and (iii) its inverse suffix array SA−1;

• lookup in SA returns the value of SA[i], the
position of the ith suffix in lexicographical order,
for 1 ≤ i ≤ n; lookup in SA−1 returns the value
of SA−1[j], the rank of the jth suffix in T ;

• substring decompresses the portion of T corre-
sponding to the first c symbols (a prefix) of the
suffix in SA[i], for 1 ≤ i ≤ n and 1 ≤ c ≤
n − SA[i] + 1.

We still need to store SA` and its inverse, as
well as a dictionary to mark the positions in the
original suffix array represented in SA`. Here we



File wave arit bzip2 gzip lha vh1 zip wavesa
book1 5.335 4.530 2.992 2.953 2.967 4.563 2.954 2.619
E.coli 2.248 2.008 2.189 2.337 2.240 2.246 2.337 2.181

bible.txt 5.004 4.309 1.931 1.941 1.939 4.353 1.941 1.631
world192.txt 5.572 3.043 1.736 1.748 1.743 5.031 1.749 1.519
ap90-64.txt 5.392 4.913 2.189 2.995 2.862 4.938 2.995 1.668

Table 4: Comparison of wavelet tree compression to standard methods. The values in the table are in bps.

File MTF E(L) γ δ Golomb Maniscalco Bernoulli MixBernoulli
book1 No 1.650 2.585 2.691 20.703 20.679 2.723 2.726
book1 Yes 1.835 2.742 3.022 3.070 2.874 2.840 2.921

bible.txt No 1.060 1.666 1.740 15.643 16.678 1.742 1.744
bible.txt Yes 1.181 1.753 1.940 2.040 1.926 1.826 1.844
E.coli No 1.552 2.226 2.520 2.562 2.265 2.448 2.238
E.coli Yes 1.584 2.251 2.566 2.445 2.232 2.398 2.261

world192.txt No 0.950 1.536 1.553 19.901 21.993 1.587 1.589
world192.txt Yes 1.035 1.570 1.707 2.001 1.899 1.630 1.643
ap90-64.txt No 1.103 1.745 1.814 24.071 25.995 1.815 1.830
ap90-64.txt Yes 1.235 1.840 2.031 2.148 2.023 1.915 1.935
ap90-100.txt No 1.077 1.703 1.772 24.594 26.191 1.772 1.787
ap90-100.txt Yes 1.207 1.797 1.985 2.104 1.982 1.870 1.890

Table 5: Measure of the effect of MTF on various coding methods when used with RLE. The MTF column
indicates when it is used. The values in the table are in bps.

face a similar problem to that of the directories
in our dictionary D where, if we follow the same
techniques, we sparsify these arrays. In Table 6,
we show the number of bits per symbol needed
for compressed suffix arrays on some files from the
Canterbury corpus. Notice the minimal overhead cost
for adding suffix array functionality. In addition, we
compare our methods to those employed in the FM-
index [11, 12].

In the experiments we describe in Table 6 our
Φ function is the functional equivalent of the tiny
FM-index, and our compressed suffix array (CSA) is
the functional equivalent of the fat FM-index. Note
that our CSA always saves significant space over
the fat FM-index, even when it is tuned specifically
to support compression. (The split value in the
entry for bible.txt indicates this specific tuning,
though similar information was not available for other
files.) Note also the small difference between the
split entries in our method; the additional space
implements fractional cascading in our wavelet tree,
and requires almost negligible space. Our Φ function
performs to within 2% of the bounds obtained by the
tiny FM-index, and performs better on bible.txt
and ap90-64.txt.

4 An Application: Space-Efficient Suffix
Trees

In this section, we apply our ideas to the implemen-
tation of a space-efficient version of suffix trees [20].
We consider more than just the problem of searching,
as suffix trees are at the heart of many algorithms
on strings and sequences, so their full functionality

is needed [18]. From a theoretical point of view, a
suffix tree can be implemented in either O(n log |Σ|)
bits or |CSA| + 6n + o(n) bits [35], which is signifi-
cantly larger than that of the compressed suffix arrays
discussed before. The bottleneck comes from retain-
ing the longest common prefix (LCP ) information,
which requires at least 6n bits [36]. As an alterna-
tive, the same information can be maintained in at
least 4n bits to retain the tree shape of at most 2n−1
nodes [26], though there is a slowdown since the LCP
information is not stored explicitly. In either case, a
separate (compressed) suffix array is needed. As a re-
sult, the best theoretical representation of suffix trees
can occupy more than 8n bits, which is the size of the
text itself.

Note that the compressed suffix array encodes the
leaves of the suffix tree. Since the LCP information
encodes the internal nodes of the suffix tree, the
bound reduces to less than 6n bits in practice.
Despite our dictionaries, however, the space required
by the LCP is not drastically diminished, but it is
expected since we are encoding the internal structure
of the suffix tree.

To achieve less than 6n bits, we employed a
simple heuristic that introduces an arbitrarily chosen
parameter S = O(log n) that represents the slowdown
factor. We implement part of the lowest common
ancestor simplification introduced in [7]. We use our
dictionaries and sparsification of the entries, sped
up with tricks to take advantage of parallelism in
modern processors. Once we have this, we can use
just O(1) additional words to get a representation of a
suffix tree. For example, we obtain 2.98 bps (book1),



book1 bible.txt E.coli world192.txt ap90-64.txt ap90-100.txt

Φ overhead 0.166/0.171 0.050/0.052 0.050/0.051 0.067/0.069 0.032/0.033 0.032/0.033
Φ 2.785/2.790 1.681/1.683 2.231/2.232 1.586/1.588 1.700/1.701 1.659/1.660

CSA overhead 0.328/0.332 0.210/0.212 0.210/0.212 0.228/0.230 0.192/0.194 0.191/0.192
CSA 2.946/2.951 1.841/1.843 2.391/2.392 1.747/1.749 1.860/1.861 1.818/1.819

Tiny FM-index - 1.687 2.154 1.570 1.771 -
Fat FM-index - 1.911/2.582 2.689 2.658 2.839 -

Table 6: Comparison of space required by Φ, the compressed suffix array (CSA), and the FM-index, given in
bps. Overhead refers to all space other than the RLE+γ encoding for the data itself. Φ should be compared
to the tiny FM-index, and the CSA to the fat FM-index. Most entries contain two values— the first is tuned
for space, the second is tuned for speed. Singleton entries are the latter.

2.54 bps (E.coli), 2.21 bps (bible.txt) and 2.8 bps
(world192.txt). These sizes are comparable to those
obtained by gzip, namely, 3.26 bps (book1), 2.31
bps (E.coli), 2.35 bps (bible.txt) and 2.34 bps
(world192.txt). A point in favor of the compressed
representation of suffix trees is that they fit in main
memory for large text sizes, while regular suffix
trees must resort to external memory techniques.
A drawback is that accessing the former requires
more CPU time. Nevertheless, their performance is
superior when compared to regular suffix trees that
must reside in external memory. There are several
applications for which this is the case (e.g., storing
the suffix tree for the human genome).

We exploit a folklore relationship between suf-
fix tree nodes and intervals in the suffix array, which
has been also used recently to devise efficient algo-
rithms [4, 5, 6]. For each node u, there are two inte-
gers 1 ≤ ul ≤ ur ≤ n such that SA[ul . . . ur] contains
all the suffixes stored in the leaves descending from
u. Thus, u ≡ (ul, ur, `u) is a triple of integers in
our representation, where `u represents the LCP be-
tween the strings of the text beginning at positions
SA[ul] and SA[ur]. In particular, for each node u,
we support the following operations:
• reaching u’s parent;
• branching to u’s child v by reading symbol s;
• finding the label of the edge (u, v) (with cost

proportional to length of label);
• computing the skip value of u;
• determining the number of leaves descended

from u;
• checking whether u is an ancestor of v;
• computing the lowest common ancestor of u and

v;
• following the suffix link from u to v, in the style

of McCreight or Weiner [18].

We base our algorithms on the fact that, using
LCP information, we can go from node u to node v
by extending their intervals suitably and using the
LCP information to navigate in the compressed suffix
array. We defer the details for most operations until
the full version of this paper, and discuss only how
to follow the suffix link from u to v.

Let u ≡ (ul, ur, `u) and v ≡ (vl, vr, `v). We use
our wavelet tree to determine two values u′

l, u
′
r such

that vl ≤ u′
l ≤ u′

r ≤ vr. To find vl and vr, we observe
that lcp(SA[u′

l], SA[u′
r]) = `v. We perform two bi-

nary searches, one for u′
l going leftward and the other

for u′
r going rightward. At each step of our binary

search in position i, we compute lcp(SA[i], SA[u′
l])

and compare it with `v. Depending on the outcome,
we can decide which way to go. Since vl is the left-
most position such that lcp(SA[vl], SA[u′

l]) ≥ `v, we
can find vl in a logarithmic number of steps. Finding
vr is similar.

5 Implementation Details

In this section, we discuss our experimental setup.
Many experiments were run on an IBM xSeries
335 Server. This machine has a 2.0 GHz Intel
Xeon processor with a 512 KB L2 cache, 2.0 GB
of PC2100 DDR-SD RAM, and a 40 GB IDE
hard drive with 2 MB cache. We also employed
a 1.0 GHz Athlon based PC with 512MB RAM.
Both machines are running Debian Linux 3.0,
with a gnu gcc/g++ 3.2 compiler. The data sets
used were drawn mainly from the Canterbury
corpus <http://corpus.canterbury.ac.nz>.
We also used Associated Press news
<http://trec.nist.gov/data/docs_eng.html>
and electronic books from the Gutenberg project at
<http://promo.net/pg/>.

Our source code is written in C in an object-
oriented style. Our code is organized as five distinct
modules, which we now describe briefly. Module
dict implements our crucial dictionaries (Section 2).
Module phi implements the wavelet tree and its
use in compressed suffix arrays, while module csa
implements the compressed suffix array and related
functionality (Section 3). Module lcp stores the
LCP information and module st implements suffix
tree functionality, though we avoid storing any nodes
explicitly (Section 4). The latter module requires
fast decompression of symbols, access to the suffix
array and its inverse, and fast computation of LCP
information, all of which are provided in the other
modules.

6 Conclusions

Compared to inverted files, our text index requires
20% of the space of text, without requiring the text
(self-indexing), and supporting faster, more powerful



searches. We outperform the best known full-text
indexing methods by roughly 10%.

The techniques we have developed are practically
sound, but also grounded in solid theoretical analy-
sis and strong notions of encoding both the data and
the underlying model cost. Our method is tuneable
to the access pattern of any file, which is a property
unknown in similar work on compressed indexing. We
construct the index in competitive time (roughly 1-2
minutes for 64 MB of data on our test system). We
plan to perform intense algorithm engineering to fur-
ther tune the search time of our structures. Despite
these achievements, we believe that our space can
be further reduced by considering more sophisticated
codes for integers, such as practical arithmetic cod-
ing or szip. Our method directly depends upon the
space bounds of our dictionaries; any improvement
there yields significant savings on our method. The
best possible compression achievable is that of E(L);
there is significant room for improvement. Our key
is to exploit the underlying entropy in the text using
a transform and a solid method of removing redun-
dancy using the wavelet tree.
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