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ABSTRACT
Monitoring the performance of large shared computing sys-
tems such as the cloud computing infrastructure raises many
challenging algorithmic problems. One common problem is
to track users with the largest deviation from the norm (out-
liers), for some measure of performance. Taking a stream-
computing perspective, we can think of each user’s perfor-
mance profile as a stream of numbers (such as response
times), and the aggregate performance profile of the shared
infrastructure as a “braid” of these intermixed streams. The
monitoring system’s goal then is to untangle this braid suf-
ficiently to track the top k outliers. This paper investi-
gates the space complexity of one-pass algorithms for ap-
proximating outliers of this kind, proves lower bounds using
multi-party communication complexity, and proposes small-
memory heuristic algorithms. On one hand, stream outliers
are easily tracked for simple measures, such as max or min,
but our theoretical results rule out even good approxima-
tions for most of the natural measures such as average, me-
dian, or the quantiles. On the other hand, we show through
simulation that our proposed heuristics perform quite well
for a variety of synthetic data.

1. INTRODUCTION
Imagine a general purpose stream monitoring system faced

with the task of detecting misbehaving streams among a
large number of distinct data streams. For instance, a net-
work diagnostic program at an IP router may wish to high-
light flows whose packets experience unusually large aver-
age network latency. Or, a cloud computing service such as
Yahoo Mail or Amazon’s Simple Storage Service (S3), cater-
ing to a large number of distinct users, may wish to track
the quality of service experienced by its users. The perfor-
mance monitoring of large, shared infrastructures, such as
cloud computing, provides a compelling backdrop for our
research, so let us dwell on it briefly. An important charac-
teristics of cloud computing applications is the sheer scale
and large number of users: Yahoo Mail and Hotmail sup-
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port more than 250 million users, with each user having
several GBs of storage. With this scale, any downtime or
performance degradation affects many users: even a guaran-
tee of 99.9% availability (the published numbers for Google
Apps, including Gmail) leaves open the possibility of a large
number of users suffering downtime or performance degra-
dation. In other words, even a 0.1% user downtime affects
250,000 users, and translates to significant loss of produc-
tivity among users. Managing and monitoring systems of
this scale presents many algorithmic challenges, including
the one we focus on: in the multitude of users, track those
receiving the worst service.

Taking a stream-computing perspective, we can think of
each user’s performance profile as a stream of numbers (such
as response times), and the aggregate performance profile
of the whole infrastructure as a braid of these intermixed
streams. The monitoring system’s goal then is to untangle
this braid sufficiently to track the top k outliers. In this
paper, we study questions motivated by this general setting,
such as “which stream has the highest average latency?”, or
“what is the median latency of the k worst streams?,” “how
many streams have their 95th percentile latency less than a
given value?” and so on.

These problems seem to require peering into individual
streams more deeply than typically studied in most of the ex-
tant literature. In particular, while problems such as heavy
hitters and quantiles also aim to understand the statistical
properties of IP traffic or latency distributions of webservers,
they do so at an aggregate level: heavy hitters attempt to
isolate flows that have large total mass, or users whose to-
tal response time is cumulatively large. In our context, this
may be uninteresting because a user can accumulate large
total response time because he sends a lot of requests, even
though each request is satisfied quickly. On the other hand,
streams that consistently show high latency are a cause for
alarm. More generally, we wish to isolate flows or users
whose service response is bad at a finer level, perhaps tak-
ing into account the entire distribution.

1.1 Problem Formulation
We have a set B, which we call a braid, of m streams
{S1, S2, . . . , Sm}, where the ith stream has size ni, namely,
ni = |Si|. We assume that the number of streams is large
and each stream contains potentially an unbounded number
of items; that is, m � 1 and ni � 1, for all i. By vij , we
will mean the value of the jth item in the stream Si; we
make no assumptions about vij beyond that they are real-
valued. In the examples mentioned above, vij represents the
latency of the jth request by the ith user. We formalize the
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misbehavior quality of a stream by an abstract weight func-
tion λ, which is function of the set of values in the stream.
For instance, λ(S) may denote the average or a particular
quantile of the stream S. Our goal is to design streaming
algorithms that can estimate certain fundamental statistics
of the set {λ(S1), λ(S2), . . . , λ(Sm)}.

When needed, we use a self-descriptive superscript to dis-
cuss specific weight functions, such as λavg for average, λmed

for median, λmax for maximum, λmin for minimum etc. For
instance, if we choose the weight to be the average, then
λavg(S) denotes the average value in stream S, and

max{λavg(S1), λavg(S2), . . . , λavg(Sm)}

computes the worst-stream by average latency. Throughout
we will focus on the one-pass model of data streams.

As is commonly the case with data stream algorithms,
we must content ourselves with approximate weight statis-
tics because even in the single stream setting neither quan-
tiles nor frequent items can be computed exactly. With this
in mind, let us now precisely define what we mean by a
guaranteed-quality approximation of high weight streams.
There are two natural and commonly used ways to quantify
an approximation: by rank or by value. (Recall that the
rank of an element x in a set is the number of items with
value equal to or less than x.)

• Rank Approximation: Let λ be an arbitrary weight
function (e.g. median), and let λi = λ(Si) be the value
of this function for stream Si. We say that a value λ′i
is a rank approximation of λi with error E if the rank
of λ′i in the stream Si is within E of the rank of λi.
Namely,

|rank(λ′i, Si) − rank(λi, Si)| ≤ E,

where rank(x, S) denotes the rank of element x in
stream S and E is a non-negative integer. Thus, if we
are estimating the median latency of a stream, then λ′i
is its rank approximation with error E if

|rank(λ′i, Si) − b|Si|/2c| ≤ E.

• Value Approximation: Let λ be an arbitrary weight
function (e.g. median), and let λi = λ(Si) be the value
of this function for stream Si. We say that λ′i is a value
approximation of λi with relative error c if

|λ′i − λi| ≤ cλi.

While rank approximation often seems more appropriate
for quantile-based weights, and value approximation for av-
erage, they both yield useful insights into the underlying
distribution. For instance, given any positive α, at most
|S|/α items in S can have value more than αλavg(S). Thus,
a rank approximation of λavg(S) also localizes the relative
position of the approximation. Conversely, a value approx-
imation of the median or quantile can be especially useful
when the distribution is highly clustered, making the rank
approximation rather volatile—two items may differ greatly
in rank, but still have values very close to each other. Our
overall goal is to estimate streams with large weights with
guaranteed quality of approximation: in other words, if we
assert that the worst stream in the set B has median weight
λ∗ then we wish to guarantee that λ∗ is an approximation
of max{λmed(S1), λmed(S2), . . . , λmed(Sm)}, either by rank

or by value. We prove possibility and impossibility results
on what error bounds are achievable with small memory.

1.2 Our Contributions
We begin with a simple observation that finding the top

k streams under the λmax or λmin weight functions is easy:
this can be done using O(k) space and O(log k) per-item
processing time. In the context of webservices monitoring
applications, this allows us to track the k streams with worst
latency values. As is well known, however, statistics based
on max or min values are highly volatile due to outlier ef-
fects, and filtering based on more robust weight functions
such as quantiles or even average is preferred.

We propose a generic scheme that can estimate the weight
of any stream using O(ε−2 logU log δ−1) space (being U the
size of the range of the values in the streams), with rank
error ε

Pm
i=1 ni with probability at least 1 − δ. With this,

we can report the weights of the top k streams for any of the
natural functions such as average, median, or other quantiles
so that the rank error in the reported values is at most
ε
Pm
i=1 ni.

One may object to the
Pm
i=1 ni term in the rank ap-

proximation, and ask for a more desirable εni error term
so that the error depends only on the size of an individual
stream, rather than the whole set of streams. On pragmatic
terms also, this is justified because even for modest values
(a few thousand streams, each with a million or so items),
the

Pm
i=1 ni error can make the approximation guarantee

worthless. In essense, our error approximation is linearly
worsening with the number of streams, which is not a very
scalable use of space.

Unfortunately, we prove an impossibility result showing
that achieving εni error in rank approximation requires space
at least linear in the number of streams (the braid size).
Worse yet, our lower bound even rules out εñ rank approxi-
mation, where ñ is the average stream size in the set. Thus,
the space complexity is not an artifact of rarity, as is the
case with the frequent item problem. In particular, we show
that even if all streams in the braid have size Θ(ñ), achiev-
ing rank approximation εñ requires space Ω(m( 1−2ε

1+2ε
)2+γ),

for any γ > 0, where m is the number of streams in the
braid.

Similarly, for the value approximation we show that esti-
mating the average latency of the worst stream in B within
a factor t requires Ω(m/t2+γ) space. Our lower bounds also
rule out optimistic bounds even for highly structured and
special-case streams. For instance, consider a round robin
setting where values arrive in a round-robin order over the
streams, so at any instant the size of any two streams dif-
fers by at most one. One may have hoped that for such
highly structured streams, improved error estimates should
be possible. Unfortunately, a variant of our main construc-
tion rules out that possibility as well.

In the face of these lowers bounds, we designed and imple-
mented two algorithms, ExponentialBucket and Vari-
ableBucket, and evaluated them for a variety of synthetic
data distributions. We use three quality metrics to evaluate
the effectiveness of our schemes: precision and recall, which
measures how many of the top k captured by our scheme
are true top k, distortion, which measures the average rank
error of the captured streams relative to the true top k, and
average value error, which measures absolute value differ-
ences. We tested our scheme on a variety of synthetic data

2



distributions. These data use a normal distribution of val-
ues within the streams, and either a uniform or a normal
distribution across streams. In all these cases, our precision
approaches 100% for all three metrics (average, median, 95th
percentile), the distortion is between 1 and 2, and the aver-
age error is less than 0.02. The memory usage plot also con-
firms the theory that the size of the data structure remains
unaffected by the number and the sizes of the streams.

1.3 Related Work
Estimation of stream statistics in the one-pass model has

received a great deal of interest within the database, net-
working, theory, and algorithms communities. While the
one-pass majority finding algorithm dates back to Misra and
Gries [14], and tradeoffs between memory and the number
of passes required goes back to the work of Munro and Pa-
terson [15], a systematic study of the stream model seems to
have begun with the influential paper of Alon, Matias and
Szegedy [1], who showed several striking results, including
space lower bounds for estimating frequency moments, as
well as for determining the frequency of the most frequent
item in a single stream. While some statistics such as the
average, min, and the max can be computed exactly and
space-efficiently, other more holistic statistics such as quan-
tiles cannot. Fortunately, however, several methods have
been proposed over the last decade to approximate these
values with bounded error guarantees. For instance, quan-
tiles can be estimated with additive error εn using space
O(ε−1 logn) [9] or space O(ε−1 logU) [18] where n is the
stream size and U is the largest integer value for the stream
items. There is also a rich body of literature on finding fre-
quent items, top k items, and heavy hitters [5, 4, 10, 12, 13,
17].

Schemes such as Counting Bloom filters [8] or Count-Min
sketches [6] can be viewed as methods for estimating statis-
tics over multiple streams. In particular, these methods are
motivated by the need to estimate the sizes of large flows
at a router: in our terminology, these methods estimate the
aggregate sizes of the top k streams in the braid. By con-
trast, we are interested in more refined statistics (e.g. top k
by the average value) that require peering into the streams,
rather than simply aggregating them. Bonomi et al. [3] have
extended Bloom filters to maintain not just the presence or
absence of a stream, but also some state information about
the stream. But this state information does not reflect any
aggregate statistical properties of the stream itself.

The time-series data mining community has focused on
finding similar [7] or dissimilar sequences [11] in a set of
large time-series sequences. But this work is not geared
towards a one-pass stream setting and hence assumes that
we have O(m) memory available where m is the number of
streams.

1.4 Organization
Our paper is organized in five sections. In Section 2,

we present our main theoretical results, namely, the lower
bounds on the space complexity of single-pass algorithms for
detecting outlier streams in a braid. In Section 3, we pro-
pose two generic space-efficient schemes for estimating the
top k streams in a braid, and analyze their error guarantees.
In Section 4, we discuss our experimental results. Finally,
we conclude with a discussion in Section 5.

2. SPACE COMPLEXITY LOWER BOUNDS
In this section, we present our main theoretical results,

namely, space complexity lower bounds that rule out space-
efficient approximation of outlier streams in a fairly broad
setting. We mentioned earlier that for simple weight func-
tions such as the max or min, one can easily track the top
k streams, using just O(k) space and O(log k) per-item pro-
cessing. (This is easily done by maintaining a heap of k
distinct streams with the largest item values.) Surprisingly,
this good news ends rather abruptly: we show that even
tracking top k streams using the second largest item is al-
ready hard, and requires memory proportional to the size
of the braid, |B|. Similarly, we argue that while tracking
streams with the maximum or the minimum items is easy,
tracking streams with the largest spread, namely, difference
of the maximum and the minimum items, requires linear
space. Our main result rules out even good approximation
of most of the major statistical measures, such as average,
median, quantiles, etc.

We begin by recalling our formal definition of approxi-
mating the outlier streams. Suppose we wish to rank the
streams in the braid B using a weight function λ. Without
loss of generality, assume that the top k streams are in-
dexed 1, 2, . . . , k; that is, λ1 ≥ λ2 ≥ · · · ≥ λk. We say that
a stream Si is approximately a top k stream if its λ-value is
at least as large as λk within the approximation error range.
For instance, suppose we are using the median latency λmed,
then stream Si is a top k stream with rank approximation E
if the value of item with rank |Si|/2 + E (true median plus
the rank error) in Si is at least as large as λk. Similarly,
one can define the approximation for value approximation.
In the following, we discuss our lower bounds, which are all
based on the multi-party communication complexity [2, 19,
16]. All our lower bounds employ variations on a single con-
struction, so we begin by describing this general argument
below.

2.1 The Lower Bound Framework
Our lower bounds are based on reductions from the multi-

party set-disjointness problem, which is a well-known prob-
lem in communication complexity [16]. An instance DISJm,t
of the multi-party set disjointness problem consists of t play-
ers and a set of items A = {1, 2, . . . ,m}. The player i, for
i = 1, 2, . . . , t, holds a subset Ai ⊆ A. Each instance comes
with a promise: either all the subsets A1, A2, . . . At are pair-
wise disjoint, or they all share a single common element but
are otherwise disjoint. The former is called the YES instance
(disjoint sets), and the latter is called the NO instance (non-
disjoint sets). The goal of a communication protocol is to
decide whether a given instance is a YES instance or a NO
instance. The protocol only counts the total number of bits
that are exchanged among the players in order to decide
this; the computation is free. We will use the following re-
sult from communication complexity [2]: any one-way pro-
tocol (where player i sends a message to player i + 1, for
i = 1, 2, . . . , t, that decides between all YES instances and
NO instance with success probability greater than 1− δ, for
any 0 < δ < 1, requires at least Ω(m/t1+γ) bits of communi-
cation, where recall that t is the number of players and m is
the size of the set and γ > 0 is an arbitrarily small constant.

The idea behind our lower bound argument is to simu-
late a one-way multi-party set-disjointness protocol using a
streaming algorithm for the top k streams. If the stream-
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Stream ID

Synopsis

Player 1 2 3 4

{2}     {2,4}    {1,2,5}    {2,6}      

Figure 1: Illustration of a NO instance of DISJ6,4,
with four players. The subsets of the players are
shown above their ids, and the values inserted by
them into the streams (following the protocol of
Theorem 1) are shown in the Table 1
.

Stream ID 1 2 3 4 5 6
Player 1 0 1 0 0 0 0
Player 2 0 1 0 1 0 0
Player 3 1 1 0 0 1 0
Player 4 0 1 0 0 0 1

Table 1: The values inserted by the players of Fig-
ure 1 in the lower bound construction of Theorem 1
are shown in this table.

ing algorithm uses a synopsis data structure of size M , then
we show that there is a one-way protocol using O(Mt) bits
that can solve the t-party disjointness problem. Because the
latter is known to have a lower bound of Ω(m/t1+γ), it im-
plies that the memory footprint of the streaming algorithm
becomes Ω(m/t2+γ). The basic construction associates a
stream with each element of the set A; namely, the stream
Si is identified with the item i ∈ A. See Fig. 1 for an exam-
ple. We initialize each stream with some values, and then
insert the remaining values based on the sets Ai held by
the t players; these values depend on specific constructions.
The key idea behind all our constructions is that the braid of
streams is such that approximating the top k streams within
the approximation range requires distinguishing between the
YES and NO instances of the underlying set-disjoint prob-
lem. We present the details below as we discuss specific
constructions. We begin with our main result on the space
complexity of tracking the top k streams under the most
common statistical measures, such as median, quantile, or
average.

2.2 Space Complexity of Ranking by Median
or Average

Theorem 1. Let B be a braid of m streams, where each
stream has Θ(n) elements. Then, determining the top stream
in B by median value, within rank error εn (0 < ε < 1/2)
requires space at least

Ω

 
m

„
1− 2ε

1 + 2ε

«2+γ
!
.

for arbitrarily small γ > 0. That is, finding the stream with
the maximum median latency, within additive rank approxi-
mation error εn, requires essentially space linear in the num-
ber of streams.

Proof. Suppose there exists a stream synopsis of size
M that can estimate the latency of the maximum median

pt

pt

p

p

YES

NO

Median: p(t+1)/2

0,0,... ,0,1,1,... ...,1

0,0,... ,0,1,1,... ...,1

.................................

.................................

Figure 2: Distribution of values in streams for YES
and NO instances of DISJm,t. For the YES instance,
the median value is 0 up to a rank error of pt− p(t+
1)/2, while for the NO instance, the median value is
1 up to a rank error of p(t+ 1)/2− p.

latency stream within rank error εn. We now show a re-
duction that can use this synopsis to solve the multi-party
set disjointness problem using O(M) bits of communication.
Let p be an integer, to be fixed later. We initialize the syn-
opsis by inserting p items in each stream with value 0. The
multi-party protocol then modifies the stream as follows,
one player at a time, from player 1 through t. On his turn,
if player j has item i in its set, then it inserts p items of
value 1 in stream i, for each i ∈ Aj . If the player j does not
have item i in its set, then it inserts p items of value 0 in
the stream i. (Recall that items of the ground set A cor-
respond to streams in our construction.) Thus each player
inserts precisely pm values to the streams, and in the end,
each stream has exactly p + pt items in it. An example
of the running of this protocol is shown in Fig. 1 and the
corresponding values inserted by each player is tabulated in
Table 1.

After all the t players are done, we output YES if the
maximum median latency among all streams is 0, and oth-
erwise we return NO. We now reason why this helps decide
the set-disjointness problem. Suppose the instance on which
we ran the protocol is a YES instance. Then any stream has
either all 0 values (this happens when index corresponding
to this stream is absent from all sets Aj), or it has p values
equal to 1 and pt values equal to 0 (because of the disjoint-
ness promise, the index corresponding to this stream occurs
in precisely one set Aj and that j inserts p copies of 1 to
this stream, while others insert 0s). See Fig. 2. Therefore
up to a rank error p(t − 1)/2 the median latency of all the
streams is 0. On the other hand, if this is a NO instance,
then there exists a stream that has p 0 values and pt values
equal to 1. This stream, therefore, has a median latency of
1 up to a rank error p(t−1)/2. Therefore our algorithm can
distinguish between a YES and a NO instance.

We may choose p = n/(1 + t), so that each stream has
size n and our rank error is n 1

2
t−1
t+1

. Since the algorithm

uses O(M) space and there are t players, the total com-
munication complexity is Θ(Mt), which by the communica-
tion complexity theorem is Ω(m/t1+γ). Finally, solving the
equality ε = 1

2
t−1
t+1

for t, we get the desired lower bound that

M = Ω

„
m
“

1−2ε
1+2ε

”2+γ
«

. This completes the proof.
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We point out that our stream construction is highly struc-
tured, meaning that this lower bound rules out good ap-
proximation even for very regular and balanced streams. In
particular, the difficulty of estimating the maximum median
latency is not a result of rarity of the target stream: indeed,
all streams have equal size. Moreover, the construction can
be implemented in a way so that items are inserted into the
streams in a round-robin way (see Table 1). Therefore, the
construction is also not dependent on a pathological spikes
in stream population. Thus, even under very strict ordering
of values in the streams, the problem of determining high
weight streams remains hard.

It is easy to see that the construction is easily modified
to prove similar lower bounds for other quantiles. The same
construction also shows a space lower bound for determining
the maximum average latency stream. Simply observe that
the average latency for the NO instance is 1/(1 + t), while
the average latency for the YES instance is t/(1+ t). There-
fore any t-approximation algorithm for the average measure
requires space at least Ω(m/t2+γ), for any t ≥ 2 and γ > 0.

Theorem 2. Determining the top stream by average value
within relative error at most t requires at least Ω(m/t2+γ)
space, where m is the number of streams in the braid, t ≥ 2
and γ > 0.

2.3 Lower Bound for Second Largest
Surprisingly, similar constructions also show that even mi-

nor variations of the easy case (finding the stream with the
largest or the smallest extremal value) make the problem
provably hard. In particular, suppose we want to track the
stream with the maximum second largest value. Let us de-
note this weight function as λ2max. Our proof below proves
a space lower bound for even approximating this. In partic-
ular, we say that an streaming algorithm finds the second
largest-valued stream with approximation factor c if it re-
turns a stream whose rank by the second largest value is at
most 2c, for any integer c ≥ 1. Note that this definition of
approximation is one sided, because the approximate value
returned always has rank 2c ≥ 2. (Of course, allowing c < 1
trivializes the problem because then we can always use the
max value instead of the second largest.) Then, we have the
following.

Theorem 3. Determining the top stream by second-largest
value within approximation factor t requires at least Ω(m/t2+γ)
space, for any γ > 0, where m is the number of streams in
the braid and t ≥ 2 is an integer.

Proof. In this case, suppose there exists a streaming al-
gorithm for the top stream by second largest value problem
using space M , and consider the following reduction from an
instance of the t-party set-disjointness problem. Each player
j, for j = 1, 2, . . . , t, in turn adds items to stream using the
following rule: player j inserts values j + 1 and 1/(j + 1) in
the stream Si for each i in its set Aj . For all other streams
that it does not hold, it inserts two 0 values in that stream.
Therefore every player inserts 2m values into the braid and
at the end of the protocol, each stream has exactly 2t values.

At the end, we return YES to the set-disjointness prob-
lem if our streaming algorithm computes the value of the top
stream as less than 1, and NO otherwise. We now reason its
correctness. If the t-party instance is a YES instance, then
any stream i either contains the values 0, or it contains val-
ues 0, p+ 1 and 1/(p+ 1), for some 1 ≤ p ≤ t. Thus, the top

stream by the second largest value has value less than 1 up
to an approximation factor of t/2. On the other hand, if this
is a NO instance, then there exists a stream that includes
all the values 1/(t+1), 1/t, . . . , t, t+1, whose second largest
value is t. Therefore if our algorithm has an approximation
ratio better than t/2, it can distinguish between YES and
NO instances. Because our protocol requires sending M -size
synopsis to t players, the total communication complexity is
Θ(Mt), which by the lower bound on set-disjointness is at
least Ω(m/t1+γ). Therefore, determining the top stream by
second largest must require at least Ω(m/t2+γ) space, and
this completes the proof.

2.4 Lower Bound for Spread
We next argue that while tracking the top stream with

the largest or the smallest value is possible, tracking the top
stream with the largest spread, namely, max(S)−min(S) is
not possible without linear space.

Theorem 4. Determining the top stream by the spread
requires at least Ω(m) space, where m is the number of streams
in the braid.

Proof. Let us consider an instance of DISJm,t and a
streaming algorithm with a synopsis of size M which can
determine the stream with maximum spread.

In this case, we can use a 2-party set-disjointness lower
bound. Let us call the two players, ODD and EVEN. We
begin by inserting a single value 0 in each of the m streams.
First, the ODD player inserts the value −1 into each stream
Si for which i is in its set AODD. Next, the EVEN player
inserts the value +1 into each stream Si for which i is in its
set AEVEN. Clearly, the top stream by the maximum spread
has spread 1, then the sets of ODD and EVEN are disjoint,
and so this is a YES instance. Otherwise, the top stream
has spread 2, and this is a NO instance. The synopsis size
of the streaming algorithm, therefore, is at least Ω(m). This
completes the proof.

This finishes the discussion of our lower bounds. The
main conclusion is that approximating the top k streams
either by average value, within any fixed relative error, or
by any quantile, within a rank approximation error of εni,
is not possible, where ni is the size of the top stream. In
fact, the lower bound even rules out the rank approximation
within error of εñ, where ñ is the average size of the streams
in the braid.

In the following section, we complement these lower bounds
by describing a scheme with a worst-case rank approxima-
tion error

Pm
i=1 εni, using roughly O(ε−2 logU) space.

3. ALGORITHMS FOR BRAID OUTLIERS
We begin with a generic scheme for estimating top k

streams, and then refine it to get the desired error bounds.
The basic idea is simple. Without loss of generality, suppose
the items (values) in the streams come from a range [1, U ].
We subdivide this range into subranges, called buckets, that
are pairwise disjoint and cover the entire range [1, U ]. All
stream entries with a value v are mapped to the bucket that
contains v. Within the bucket, we use a sketch, such as
the Count-Min sketch, to keep track of the number of items
belonging to different streams. With this data structure,
given any value v and a stream index i, we can estimate
how many items of stream Si have values in the range [1, v].
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This is sufficient to estimate various streams statistics such
as quantiles and the average. We point that this estimation
incurs two kinds of error: one, a sketch has an inherent error
in estimating how many of the items in a bucket belong to a
certain stream Si, and two, how many of those are less than
a value v when v is some arbitrary value in the range cov-
ered by the bucket. For the former, we simply rely on a good
sketch for frequency estimation, such as the Count-Min, but
for the latter, we explore two options, which control how the
bucket boundaries are chosen.

The first algorithm, called the ExponentialBucket al-
gorithm, splits the range into pre-determined buckets, with
boundary [`b, rb] such that the ratio `b/rb is constant. This
ensures that the relative value error of our approximation
is bounded by (rb − `b)/rb. However, the pre-determined
buckets is unable to provide a non-trivial rank approxima-
tion error bound. Our second scheme, therefore, takes a
more sophisticated approach to bucketing, and adapts the
bucket boundaries to data, so as to ensure that roughly an
equal number of items fall in each bucket.

Before describing these algorithms in detail, let us first
quickly review the key properties of our frequency-estimation
data structure, Count-Min sketch, because we rely on its er-
ror analysis. The Count-Min (CM) sketch [6] is a random-
ized synopsis structure that supports approximate count
queries over data streams. Given a stream of n items, a
CM sketch estimates the frequency of any item up to an
additive error of εn, with (confidence) probability at least
1− δ. The synopsis requires space O( 1

ε
log 1

δ
). The per-item

processing time in the stream is O( 1
δ
). We shall use the

Count-Min data structure as a building block of our algo-
rithms, but any similar sketch with the frequency estimation
bound will do for our purpose.

3.1 The Exponential Bucket Algorithm
The ExponentialBucket scheme divides the value range

[1, U ] into roughly log1+ρ U buckets. The first bucket has the

range [1, 1 + ρ), the second one has range [1 + ρ, (1 + ρ)2),
and so on. There are a total of log1+ρ U buckets, with the
last one being [U/(1 + ρ), U ]. Note that the ranges are
semi-closed, including the left endpoint but not the right.
Only the last bucket is an exception, and includes both
the endpoints. We will say that the ith bucket has range
[(1 + ρ)i, (1 + ρ)i+1], with the first bucket being labeled the
0th bucket.

Algorithm 1: ExponentialBucket Algorithm

foreach item vij in the braid do

bucketId ← log vij

log(1+ρ)
;

insert(i) into CMSketch(bucketId);
end

A stream entry v, is associated with the unique bucket
containing the value v. For every bucket, we maintain a
CM sketch to count items belonging to a stream id i. In
particular, given an item vij (j-the value in stream i) in the
braid, we first determine the bucket blog1+ρ vijc containing
this item, and then in the CM sketch for that bucket, we
insert the stream id i. Because there are log1+ρ U buckets,

and each bucket’s Count-Min sketch requires O(ε−1 log δ−1)
memory, the total space needed is O(ε−1 log1+ρ U log δ−1).

Let us now consider how to estimate the number of values
belonging to stream i in a particular bucket b. The Count-
Min sketch can estimate the occurrences of stream i in this
bucket with additive error at most εn(b), where n(b) is the
number of values from all streams that fall into bucket b.
Now suppose we want to approximate the median value for
a stream i. We first estimate ni =

P
b ni(b), the total num-

ber of items in stream i over all the buckets. The error in
estimating ni is given by the sum of individual errors in each
bucket

error(ni) =
X
b

εn(b) = εn. (1)

Then we find the bucket B such that

B−1X
b

ni(b) ≤ ni/2 ≤
BX
b

ni(b). (2)

Then we report the left boundary of the bucket B as our
estimate for the median value for stream i. We have the
following theorem.

Theorem 5. The ExponentialBucket is a data struc-
ture of size O(ε−1 log1+ρ U log δ−1) that, with probability at
least 1− δ, can find the top k streams in a set of m streams
by average, median, or any quantile value.

The ExponentialBucket scheme is simple, space-efficient,
and easy to implement, but unfortunately one cannot guar-
antee any significant rank or value approximation error with
this scheme. For instance, in the worst-case, all items could
fall in a single bucket, giving us only the trivial rank error
of n. Similarly, it could also happen that all elements tend
to fall into the two extreme buckets, and the εn error in
size estimation may cause us to be incorrect in our value
approximation by Θ(|U |). Thus, we will use Exponential-
Bucket only as a heuristic whose main virtue is simplicity,
and whose practical performance may be much better than
its worst-case. In the following, we present a more sophis-
ticated scheme that adapts its bucket boundaries in a data-
dependent way to yield a rank approximation error bound
of εn.

3.2 The Variable Bucket Algorithm
The basic building block of VariableBucket is the q-

digest data structure [18], which is a deterministic synopsis
for estimating the quantile of a data stream. At a high
level, given a stream of n values in the range [1, U ], the q-
digest partitions this range into O(ρ−1 logU) buckets such
that each bucket contains O(ρn) values. This synopsis al-
lows us to estimate the φ-th quantile of the value distribu-
tion in the stream up to an additive error of ρn using space
O(ρ−1 logU). We briefly describe the q-digest data struc-
ture below with its important properties, and then discuss
how to construct our VariableBucket structure on top of
it. Throughout we shall assume that U is a power of 2 for
simplicity.

3.2.1 Approximate Quantiles Through q-digest
The q-digest divides the range [1, U ] into 2U − 1 tree-

structured buckets. Each of the lowest level (zeroth level)
bucket spans just a single value, namely, [1, 1], [2, 2], . . . , [U,U ].
The next level bucket ranges are [1, 2], [3, 4], . . . , [U − 1, U ],
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Figure 3: A q-digest formed over the value range
[1,8]. The complete tree of buckets is shown and
the buckets that actually exist on the q-digest are
highlighted in red. The numbers next to the filled
buckets show how many values were counted within
that bucket. For this q-digest, n = 15, U = 8 and the
threshold bnρ/ logUc = 3 (see eqns. 3, 4).

the one after that [1, 4], [5, 8], . . . , [U − 3, U ] and so on un-
til the highest level bucket span the entire range [1, U ]. In
general the buckets at level ` are of the form

[2`(2i − 1) + 1, 2`2i)],

where ` = 0, 1, 2, . . . and i = 0, 1, 2 . . .. These buckets can be
naturally organized in a binary tree of depth logU as shown
in Fig. 3. For example, the bucket [1, 4] has two children:
[1, 2] and [3, 4], while [1, 4] itself is the left child of [1, 8].
Every bucket contains in integer counter which counts the
number of values counted within that bucket. Note that
the buckets in a q-digest are not disjoint: a single bucket
overlaps in range with all its children and descendants. A
q-digest with error parameter ρ consists of a small subset
(size O(ρ−1 logU)) of all possible 2U − 1 buckets.

Intuitively a q-digest has many similarities to a equi-depth
histogram: the buckets correspond to the histogram buckets
and we strive to maintain the q-digest such that all buckets
have roughly equal counts. The memory footprint of the
q-digest is proportional to the number of buckets. There-
fore to reduce memory consumption, we can take two sibling
buckets and merge them with the parent bucket. The merge
is done by deleting both the children and then adding their
counts to the parent bucket. The merge step loses infor-
mation, since the counts of both the children are lost, but
reduces memory consumption.

Formally speaking, a q-digest with error parameter ρ, is
a subset of all possible buckets such that it satisfies the
following q-digest invariant. Suppose that the total number
of values counted within the q-digest is n. Then any bucket
b in the q-digest satisfies the following two properties:

count(b) ≤
—
nρ

logU

�
(3)

count(b) + count(bp) + count(bs) >

—
nρ

logU

�
(4)

where bp is the parent bucket of b and bs is the sibling bucket
of b. The first property (3) ensures that none of the buck-
ets are too heavy and hence attempts to preserve accuracy

being lost by merging too many buckets. The only excep-
tion to this property is the leaf bucket, which due to integer
value assumption cannot be divided any further. The sec-
ond property (4) ensures that the total values counted in a
bucket, its sibling and parent are not too few; therefore it
encourages merging of buckets to reduce memory. The only
exception to this property is the root bucket since it does
not have a parent.

The q-digest supports two basic operations: Insert and
Compress. Below, we show how we extend this q-digest
structure to implement our VariableBucket algorithm and
how the basic operations work.

3.2.2 Variable Buckets Using q-digest

Algorithm 2: VariableBucket Insert Algorithm

foreach item vij in the braid do
if bucket b = [vij , vij ] does not exist then

create bucket b ;
end
insert i into CMSketch(b);
increment count(b) ;
if b and its parent and sibling violates q-digest
property then

Compress
end

end

Algorithm 3: VariableBucket Compress Algorithm

for ` = 0 to (logU − 1) do
foreach bucket b in level ` do

if count(b) + count(bp) + count(bs) < bnρ/ logUc
then

count(bp) ← count(b) + count (bs) ;
CMSketch(bp) ← CMSketch(bp) ∪
CMSketch(b) ∪ CMSketch(bs) ;
delete b and bs ;

end

end

end

The VariableBucket algorithm can be understood as
a derivative of the q-digest data structure. In the basic
q-digest, we divide the input values into ρ−1 logU buckets
and in each bucket we count the values in that bucket us-
ing a simple counter. In the VariableBucket synopsis,
we augment this simple counter by an CM sketch of size
O(ε−1 log δ−1).

Initially the q-digest starts out empty with no buckets.
When processing the next value vij (the j-th value in stream
i) in the stream, we first check the q-digest to see if the leaf
bucket [vij , vij ] exists. If it exists, then we insert the stream
id i into the CM sketch for that bucket and increment the
counter for that bucket by 1. If that bucket does not exist,
then we create a new [vij , vij ] bucket and insert the pair
into that bucket. After adding the pair, we carry out a
Compress operation on the q-digest. As more and more
data is inserted into the VariableBucket structure, the
buckets are automatically merged and reorganized by the
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Compress operation. This adaptive bucket structure is the
reason for the name VariableBucket.

Given this data structure, let us now see how to approxi-
mate the median value of a stream i. First we estimate ni by
taking the union of all the CM sketches in each bucket and
then querying it for the value of ni. We then do a post-order
traversal of the q-digest tree and merge the CM sketches of
all the buckets visited. As we merge the CM sketches, we
check the value of the count for stream i. Suppose when
we merge bucket b to the unified CM sketch, the number
of values in the unified CM sketch exceeds ni/2. Then we
report the right edge of the bucket b as our estimate for the
median.

This estimate has three sources of error. The first error
is in the estimate of ni itself, which is at most εn using the
CM sketch error bound. The second source of error is from
estimating the value of ni/2 while taking union of multiple
CM sketches and this error is again εn. The third error is
from the error in count of i in bucket b. This error arises
from the fact that any value which is counted in bucket b
can be counted on its ancestors as well, because the bucket b
overlaps with all its ancestors. Since there are at most logU
ancestors and every ancestor has count at most nρ/ logU
(eqn. 3), the total error is nρ from this source. Therefore
the total error is 2εn+ρn. By rescaling ε by a factor of two,
and setting ρ = ε, we arrive at the following theorem.

Theorem 6. The VariableBucket is a data structure
of size O(ε−2 logU log δ−1) that, with probability at least
1 − δ, can find the top k streams in a set of m streams by
average, median, or any quantile value, with (additive) rank
approximation error εn, where n is the total size of all the
streams in the braid.

Similarly, we can find top k streams using other measures
such as 95th percentile, average, etc.

4. EXPERIMENTAL RESULTS
In this section, we discuss our empirical results. We im-

plemented both of our schemes ExponentialBucket and
VariableBucket and evaluated them on a variety of datasets.
In all of our experiments we found that VariableBucket
consistently outperformed ExponentialBucket and the
main advantage of ExponentialBucket is its somewhat
smaller memory usage. (However, the memory advantage is
at most a factor of 2.) Therefore, we report all performance
numbers for the VariableBucket only and later show one
experiment comparing the relative performance of the two
schemes.

We focused on three most common statistical measures of
streams: the median, the 95th percentile, and the average
value. Our goal in these experiments was to evaluate the
effectiveness of these schemes in extracting the top k streams
using these measures. We used the following performance
metrics for this evaluation.

1. Precision and Recall: Precision is the most basic
measure for quantifying the success rate of an infor-
mation retrieval system. If S(k) is the true set of top
k streams under a weight function and S ′(k) is the
set of streams returned by our algorithms, then the
precision at k P (k) of our scheme is defined as

P (k) =
|S(k) ∩ S ′(k)|
|S(k)| =

|S(k) ∩ S ′(k)|
k

. (5)

Thus, precision provides the relative measure of how
many of the top k are found by our scheme. The preci-
sion values always lie between 0 and 1, and closer the
precision to 1.0, the better the algorithm. We note
that in this particular case, precision is the same as
recall, defined as

R(k) =
|S(k) ∩ S ′(k)|
|S ′(k)| =

|S(k) ∩ S ′(k)|
k

. (6)

since |S(k)| = |S ′(k)|.

2. Distortion: The precision is a good measure of the
fraction of top k streams found by our algorithm, but
it fails to capture the ranking of those streams. For
example, suppose we have two algorithms, and both
correctly return the top 10 streams but one returns
them in the correct rank order while the other returns
them in the reverse order. Both algorithms enjoy a
precision of 1.0 but clearly the second one performs
poorly in its ranking of the streams. Our distortion
measure is meant to capture this ranking quality. Sup-
pose for a stream Si the true rank is r(Si), while our
heuristic ranks it as r′(Si). Then, we define the (rank)
distortion for stream Si to be

di =


r(Si)/r

′(Si), if r(Si) ≥ r′(Si)
r′(Si)/r(Si), otherwise.

The overall distortion is taken to be the average dis-
tortion for the k streams identified by our scheme as
top k. The ideal distortion is 1, while the worst distor-
tion can be Θ(m/k), where m is the size of the braid:
this happens when the algorithm ranks the bottom k
streams as top k, for k � m. Thus, smaller the dis-
tortion, the better the algorithm.

3. Value Error: Both precision and distortion are purely
rank-based measures, and ignore the actual values of
the weight function λ(S). In the cases when data is
clustered, many streams can have roughly the same λ
value, yet be far apart in their absolute ranks. Since in
many monitoring application, we care about streams
with large weights, a user may be perfectly satisfied
with any stream whose weight is close to the weights
of true top k streams. With this motivation, we define
a value-based error metric, as follows. Suppose the
true and approximate streams at rank k are Sk and
S′k. Then the relative value error e(k) is defined as

e(k) =

˛̨̨̨
λ(Sk)− λ(S′k)

λ(Sk)

˛̨̨̨
(7)

The average value error e for the top k is then defined
as the average of e(k) over all k streams.

4. Memory Consumption: The space bounds that our
theorems give are unduly pessimistic. Therefore we
also empirically evaluated the memory usage of our
scheme.
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We generate several synthetic data sets using natural dis-
tributions to evaluate the performance and quality of our
algorithms. In all cases, we use 1000 streams, with about
5000 items each, for the total size of all the streams 5M. In
all cases, the values within each stream are distributed using
a Normal distribution. The mean values for each distribu-
tion are picked by an inter-stream distribution, for which we
try 3 different distributions: uniform, outlier, and normal.

• In the Uniform distribution, we pick values uni-
formly at random from the range U = [1, 216], and
each such value acts as the mean µi for stream Si.

• In the Outlier distributions, we choose 900 of the
streams with values in the range [0, 0.6U ] and the re-
maining 100 streams in the range [aU,U ], with a < 1,
for different values of a.

• In the Normal distribution, the values are chosen
from a normal distribution with mean 215, and stan-
dard deviation 214.

4.1 Precision
Our first experiment evaluates the precision quality: how

many of the true top k streams are correctly identified by
our algorithms. Figure 4 shows the results of this experi-
ment, where for each data set (of 1000 streams), we asked
for the top k, for k = 10, 20, 50, 100. In Figure 4 the outlier
distribution has parameter a = 0.8. We evaluated the preci-
sion for each of the three choices of λ: average, median, and
95th percentile. As the figure shows, the precision quality of
VariableBucket begins to approach 100% for k ≥ 50. The
pattern is similar for average, median, or the 95th percentile.
In fact, the scheme does uniformly better for outliers defined
by the 95th percentile, which is encouraging. The precision
achieved by VariableBucket on the outlier distribution
seems not to be influenced by the parameter a. As it can be
seen in Figure 5 VariableBucket consistently catches the
top100 stream by median with precision close to 1.

4.2 Distortion Performance
Our second experiment measures distortion in ranking the

top k streams, under the three weight functions average,
median, and 95th percentile. The results are shown in Fig-
ure 6. For all three data sets, distortion is uniformly small
(between 1 and 4), even for k as small as 10, and it actually
drops to the range 1–2 for k ≥ 50.

4.3 Average Value Error
The previous two experiments have attempted to measure

the quality of our scheme using a rank-based metric. In this
section, we consider the performance using the value error,
as defined earlier. The results are shown in Figure 7. For
all distributions, the relative error in the value of the top
k streams is quite small: of the order of 1–2%. Thus, even
when the algorithm finds streams outside the true top k, it
is identifying streams that are close in value to the true top
k. This is especially encouraging because in data without
clear outliers, the meaning of top k is always a bit fuzzy.

4.4 ExponentialBucket vs. VariableBucket
In our experiments, we tried both our schemes, Exponen-

tialBucket and VariableBucket, on all the data sets,
but due to the space limitation, we reported all the results
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Figure 4: The precision quality of VariableBucket as
a function of k, for the three choices of λ: average,
median, and 95th percentile.
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Figure 5: Precision achieved by VariableBucket for
different a in the outlier distribution

using VariableBucket only. In this section, we show one
comparison of the two schemes to highlight their relative
performance. Figure 8 shows the results for the precision
using the median weight, for all three data sets. The bottom
figure is the same one as in Figure 4 (middle), while the top
one shows the performance of ExponentialBucket for this
experiment. One can see that in general VariableBucket
delivers better precision than ExponentialBucket. This
was our observation in nearly all the experiments, leading us
to conclude that VariableBucket has better precision and
error guarantees than ExponentialBucket. This is also
consistent with out theory, where we found that Variable-
Bucket can be shown to have bounded rank error guaran-
tee while ExponentialBucket could not. On the other
hand, ExponentialBucket does have a memory advan-
tage: its data structure consistently was more space-efficient
that that of VariableBucket, so when space is a major
constraint, ExponentialBucket may be preferable. How-
ever, the space usage of VariableBucket itself is not pro-
hibitive, as we show in the following experiment.
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Figure 6: The distortion performance of Variable-
Bucket as a function of k, for the three choices of λ:
average, median, and 95th percentile.
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Figure 7: The average value error of VariableBucket
as a function of k, for the three choices of λ: average,
median, and 95th percentile.

uniform
outlier
normal

0.
0

0.
2

0.
4

0.
6

0.
8

k=10 k=20 k=50 k=100

(a) Precision for median, ExponentialBucket

uniform
outlier
normal

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k=10 k=20 k=50 k=100

(b) Precision for median, VariableBucket

Figure 8: A comparison of ExponentialBucket with
VariableBucket. The ExponentialBucket is more
space-efficient but consistently does worse than
VariableBucket. This experiment shows, side-by-
side, the results of the precision quality experiment
for the median weight, using the two schemes.
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Figure 9: Data structure size as a function of the
braid size.

4.5 Memory Usage
In this experiment, we evaluated how the memory usage

of VariableBucket scales with the size of the braid. In
theory, the size of VariableBucket does not grow with
m, the number of streams, or the size of individual streams.
However, theoretical bounds on the space size are highly pes-
simistic, so used this experiment to evaluate the space usage
in practice. In our implementation of VariableBucket we
used a Count-Min sketch with depth 64 and width 64. We
then built VariableBucket for number of streams vary-
ing from m = 1000 to m = 10, 000, and Figure 9 plots the
memory usage vs. the number of streams. As predicted, the
data structure size remains virtually constant, and is about
2 MB.

5. CONCLUSION
We investigated the problem of tracking outlier streams

in a large set (braid) of streams in the one-pass streaming
model of computation, using a variety of natural measures
such as average, median, or quantiles. These problems are
motivated by monitoring of performance in large, shared
systems. We show that beyond the simplest of the mea-
sures (max or min), these problems immediately become
provably hard and require space linear in the braid size to
even approximate. It seems surprising that the problem re-
mains hard even for such minor extensions of the max as
the “second maximum” or the spread (max−min), or that
even highly structured streams with the round robin order
remain inapproximable. We also propose two heuristics, Ex-
ponentialBucket and VariableBucket, analyzed their
performance guarantees and evaluated their empirical per-
formance.

There are several directions for future work. For instance,
we observed that the different Count-Min sketches are used
quite unevenly. Some sketches are populated to the point
of saturation, making their error estimates quite bad while
others are hardly used. This suggest that one could improve
the performance of our data structures by an adaptive al-
location of memory to the different sketches so that heavily
trafficked sketches receive more memory than others.
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